Coat Color and Trait Certificate Call Name: Kinni II Laboratory #: 320542 Registered Name: Kinni II of the Kinni Registration #: Breed:GoldendoodleMicrochip #:900235000090540Sex:FemaleCertificate Date:Aug. 19, 2022 **DOB:** June 2022 ## This canine's DNA showed the following genotype(s): | Coat Color/Trait Test | Gene | Genotype | Interpretation | |--|------------|--------------------------------|--| | A Locus (Agouti) | ASIP | a ^t /a ^t | Tricolor, black and tan | | A ^s Locus (Saddle Tan) | RALY | N/N | No saddle tan/creeping tan | | B Locus (Brown) | TYRP1 | B/b | Black coat, nose and foot pads (carries one copy of brown) | | Chondrodysplasia (CDPA) | CFA18 FGF4 | cd/cd | No Leg Shortening Associated with CDPA | | E Locus - e
(Apricot/Cream/Red/Yellow,
Common Variant Found in Many
Breeds) | MC1R | e/e | Yellow/red | | I Locus (Intensity) | MFSD12 | 1/1 | Normal intensity | | IC Locus (Improper
Coat/Furnishings) | RSP02 | F/IC | Furnishings (improper coat carrier) | | K Locus (Dominant Black) | CBD103 | K ^B /K ^B | No agouti expression allowed | | SD Locus (Shedding) | MC5R | SD/SD | High shedding | ## Interpretation: This dog carries two copies of $\mathbf{a^t}$ which results in tan points and can also present as a black and tan or tricolor coat color. However, this dog's coat color is also dependent on the E, K, and B genes. The tan point coat color is only expressed if the dog is also E/E or E/e at the E locus and k^y/k^y at the K locus. This dog will pass on $\mathbf{a^t}$ to 100% of its offspring. This dog carries two copies of the **N** allele, which is not associated with a saddle tan coat color. This dog's coat color is also dependent on the E, A, and K genes, among others. This dog will pass **N** to 100% of its offspring. This dog carries one copy of one of the b mutations and has a B locus genotype of **B/b**. Thus, this dog typically will have a black coat, nose, and foot pads. However, this dog's coat color is dependent on the genotypes of many other genes. This dog will pass one copy of **B** to 50% of its offspring and one copy of **b** to 50% of its offspring. This dog can produce b/b offspring if bred to a dog that is also a carrier of a b mutation (B/b or b/b). Depending on the breed, b/b dogs may be referred to as brown, chocolate, liver or red. Two genetic mutations are associated with shortened legs in dogs. Both mutations consist of copied sections (duplication) of the canine *FGF4* gene (called an *FGF4*-retrogene) that have been inserted into two aberrant locations in the genome; one in chromosome 12 (*CFA12 FGF4*; associated with CDDY and IVDD risk) and one in chromosome 18 (*CFA18 FGF4*; associated with chondrodysplasia [CDPA], but not associated with IVDD). Appropriate breeding decisions regarding dogs which have inherited the *CFA12 FGF4* mutation (WT/M or M/M) need to address both the potential loss of genetic diversity in a population which would occur if dogs with this mutation were prohibited from breeding as well as the loss of the short-legged appearance that is a defining physical characteristic for some breeds. In breeds which inherit both mutations, breeders may use genetic testing results to selectively breed for the CDPA (*CFA18 FGF4*) mutation while breeding away from the CDDY and IVDD risk (*CFA12 FGF4*) mutation to reduce IVDD risk and retain the short-legged appearance. However, the frequency of each mutation varies between breeds and, in some cases, may not be conducive to such a breeding strategy. For example, breeds with extreme limb shortening (e.g. Basset hound, Dachshund, Corgi) typically develop their appearance due to inheritance of both the *CFA12 FGF4* and *CFA18 FGF4* mutations. In addition, depending on the breed, offspring born without either the *CFA12 FGF4* or *CFA18 FGF4* mutations may display longer limbs than cohorts and, therefore, not meet specific breed standards. This dog carries two copies of the **cd** allele which does not result in leg shortening. However, the actual leg length of the dog is a result of a combination of factors including the mutation associated with CDDY and IVDD risk (*CFA12 FGF4*) as well as variants in other genes. This dog will pass one copy of **cd** to 100% of its offspring. This dog carries two copies of **e** which inhibits production of black pigment. The coat color of this dog will be yellow/red (including shades of white, cream, yellow, apricot or red). This dog will pass **e** on to 100% of its offspring. This dog does not carry a copy of the i mutation and has an I locus genotype of **I/I** which does not result in the lightening of the light, phaeomelanin pigments that produce the dog's coat color in an e/e dog. This dog will pass one copy of **I** to 100% of its offspring and cannot produce i/i dogs. This dog carries one copy of the mutation for improper coat (**IC**) and one copy of **F** and will therefore have furnishings (proper coat). This dog does not carry the mutation for weak furnishings. However, the overall coat type of this dog is dependent on the combination of this dog's genotypes at the L, Cu, and IC loci. This dog will pass **IC** (improper coat) to 50% of its offspring and **F** (furnishings, proper coat) to 50% of its offspring. Therefore, this dog can produce puppies with improper coat if bred with a dog that carries one copy (F/IC) or two copies (IC/IC) of the mutation for improper coat. The K locus genotype for this dog is $\mathbf{K}^{\mathbf{B}}/\mathbf{K}^{\mathbf{B}}$ which prevents expression of the agouti gene (A locus) and allows for solid eumelanin (black pigment) production in pigmented areas of the dog. However, this dog's coat color is also dependent on its genotypes at the E and B loci. This dog will pass on $\mathbf{K}^{\mathbf{B}}$ to 100% of its offspring. This dog carries two copies of **SD** which has been associated with higher shedding. However, the overall degree of shedding for this dog is dependent on the combination of this dog's genotypes at the SD and IC loci. This dog will pass **SD** on to 100% of its offspring. Paw Print Genetics[®] has genetic counseling available to you at no additional charge to answer any questions about these test results, their implications and potential outcomes in breeding this dog. Blake C Ballif, PhD Laboratory & Scientific Director Christina J Ramirez, PhD, DVM, DACVP **Medical Director** Paw Print Genetics® performed the testing on the dog listed on this certificate. The genes/traits reported here were selected by the client. Normal results do not exclude inherited mutations not tested in these or other genes that may cause variation in traits, medical problems or may be passed on to offspring. The results included in this report relate only to the items tested using the sample provided. These tests were developed and their performance determined by Paw Print Genetics This laboratory has established and verified the test(s)' accuracy and precision with >99.9% sensitivity and specificity. The presence of mosaicism may not be detected by this test. Non-paternity may lead to unexpected results. This is not a breed identification test. Because all tests performed are DNA-based, rare genomic variations may interfere with the performance of some tests producing false results. If you think any results are in error, please contact the laboratory immediately for further evaluation. In the event of a valid dispute of results claim, Paw Print Genetics will do its best to resolve such a claim to the customer's satisfaction. If no resolution is possible after investigation by Paw Print Genetics with the cooperation of the customer, the extent of the customer's sole remedy is a refund of the fee paid. In no event shall Paw Print Genetics be liable for indirect, consequential or incidental damages of any kind. Any claim must be asserted within 60 days of the report of the test results.